Antifungal Activity of Fused Mannich Ketones Triggers an Oxidative Stress Response and Is Cap1-Dependent in Candida albicans
نویسندگان
چکیده
We investigated the antifungal activity of fused Mannich ketone (FMK) congeners and two of their aminoalcohol derivatives. In particular, FMKs with five-membered saturated rings were shown to have minimum inhibitory concentration (MIC90s) ranging from 0.8 to 6 µg/mL toward C. albicans and the closely related C. parapsilosis and C. krusei while having reduced efficacy toward C. glabrata and almost no efficacy against Aspergillus sp. Transcript profiling of C. albicans cells exposed for 30 or 60 min to 2-(morpholinomethyl)-1-indanone, a representative FMK with a five-membered saturated ring, revealed a transcriptional response typical of oxidative stress and similar to that of a C. albicans Cap1 transcriptional activator. Consistently, C. albicans lacking the CAP1 gene was hypersensitive to this FMK, while C. albicans strains overexpressing CAP1 had decreased sensitivity to 2-(morpholinomethyl)-1-indanone. Quantitative structure-activity relationship studies revealed a correlation of antifungal potency and the energy of the lowest unoccupied molecular orbital of FMKs and unsaturated Mannich ketones thereby implicating redox cycling-mediated oxidative stress as a mechanism of action. This conclusion was further supported by the loss of antifungal activity upon conversion of representative FMKs to aminoalcohols that were unable to participate in redox cycles.
منابع مشابه
The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans.
Candida albicans is an opportunistic pathogenic yeast which frequently develops resistance to the antifungal agent fluconazole (FCZ) in patients undergoing long-term therapy. FCZ-resistant strains often display a reduced intracellular FCZ accumulation which correlates with the overexpression of the ATP-binding cassette transporters CDR1 and CDR2 or the major facilitator (MF) MDR1. We have recen...
متن کاملMechanisms Underlying the Exquisite Sensitivity of Candida albicans to Combinatorial Cationic and Oxidative Stress That Enhances the Potent Fungicidal Activity of Phagocytes
Immune cells exploit reactive oxygen species (ROS) and cationic fluxes to kill microbial pathogens, such as the fungus Candida albicans. Yet, C. albicans is resistant to these stresses in vitro. Therefore, what accounts for the potent antifungal activity of neutrophils? We show that simultaneous exposure to oxidative and cationic stresses is much more potent than the individual stresses themsel...
متن کاملSAGA/ADA complex subunit Ada2 is required for Cap1- but not Mrr1-mediated upregulation of the Candida albicans multidrug efflux pump MDR1.
Overexpression of the multidrug efflux pump MDR1 is one mechanism by which the pathogenic yeast Candida albicans develops resistance to the antifungal drug fluconazole. The constitutive upregulation of MDR1 in fluconazole-resistant, clinical C. albicans isolates is caused by gain-of-function mutations in the zinc cluster transcription factor Mrr1. It has been suggested that Mrr1 activates MDR1 ...
متن کاملGlucose promotes stress resistance in the fungal pathogen Candida albicans.
Metabolic adaptation, and in particular the modulation of carbon assimilatory pathways during disease progression, is thought to contribute to the pathogenicity of Candida albicans. Therefore, we have examined the global impact of glucose upon the C. albicans transcriptome, testing the sensitivity of this pathogen to wide-ranging glucose levels (0.01, 0.1, and 1.0%). We show that, like Saccharo...
متن کاملTrehalose is an important mediator of Cap1p oxidative stress response in Candida albicans.
Trehalose, a nonreducing disaccharide which accumulates dramatically during stationary phase or under oxidative stress, is well known as a stress protectant in several organisms. Here we investigated the putative correlation of trehalose with Cap1p, which is a basic region-leucine zipper (bZip) transcription factor participating in oxidative stress tolerance in Candida albicans. HPLC-MS analysi...
متن کامل